BIOMIMETIC CONVERSION OF EPOXYGERMACRENE-D TO A NOVEL SESQUITERPENE OF THE PLANT TORILIS JAPONICA DC.

Shosuke YAMAMURA, Masatake NIWA⁺, Masatoki ITO, and Yoshihiko SAITO

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223

+ Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya 468

Epoxygermacrene-D was treated with basic alumina to afford a new type of sesquiterpene, whose stereostructure was determined on the basis of its spectral data coupled with an X-ray crystallographic analysis of the corresponding ketone produced on ${\rm CrO}_3$ oxidation.

In the light of sesquiterpene biosyntheses, we reported the biomimetic reactions of germacrones and epoxygermacrones affording a number of sesquiterpenes with new carbon skeleton, 1 although some of them have not yet been found in nature. In the present paper, we wish to describe biomimetic reaction of epoxygermacrene-D (1) with basic alumina, affording a biogenetically interesting sesquiterpene (2), which has been recently isolated from the plant <u>Torilis japonica</u> DC. (Japanese name, "Yabujirami"), 2 in addition to the known periplanone-A-type compound. 3

A solution of epoxygermacrene-D (1) in hexane was adsorbed on basic alumina [Nakarai Chemicals, 300 mesh] at room temperature for 2.5 h, and then eluted with successively with hexane, hexane - $\rm Et_20$ (1:1) and $\rm AcOEt.^3$ The AcOEt fraction was directly acetylated with $\rm Ac_20$ - pyridine (room temp., overnight), 4 and then purified by a combination of column chromatography [1) Mallinckrodt 100 mesh, $\rm CHCl_3$; 2) 10% $\rm AgNO_3$ - $\rm SiO_2$, hexane - benzene (5:1)] and preparative TLC [10% $\rm AgNO_3$ - $\rm SiO_2$, hexane - benzene (3:1)] to afford a tricyclic sesquiterpene with one AcO group (3) in ca. 11% overall yield, which was readily converted into the original hydroxy compound (2), 6 in almost quantitative yield, on hydrolysis with 1% methanolic KOH (room temp., overnight).

2 as a colorless oil: $C_{15}H_{24}O$ [m/e 220(M⁺)]; \mathcal{V}_{max} (film) 3350br., 3080, 1665 and 885 cm⁻¹; ^{1}H NMR (CDCl₃): \mathcal{E} 0.52(1H, br.s), 0.80(3H, s), 0.94(6H, s), 7 3.48(1H, dd, J= 5, 11Hz) and 4.78(2H, br.s); ^{13}C NMR (CDCl₃): \mathcal{E} 13.8(q), 21.7(q), 21.7 (q), 24.4(d), 24.6(d), 31.1(t), 32.3(d), 34.0(t), 42.7(t), 48.5(d), 57.7 (d), 59.0(s), 77.2(d), 105.4(t) and 145.7(s).

Scheme 1. Formation process of the tricyclic sesquiterpene (2)

The 1 H and 13 C NMR spectra of 2 indicate the presence of three Me groups (&0.80 and 0.94), one secondary OH group (&3.48 and 77.2) and one exocyclic double bond (&4.78, 105.4 and 145.7). This compound (2) was subjected to oxidation using CrO_3 - pyridine (room temp., 5 h) to afford the corresponding ketone (4) 8 [mp 94 - 95 °C (from hexane - Et_2O); $C_{15}H_{22}O$ (m/e 218(M⁺))], in ca. 50% yield, whose stereostructure was directly determined by means of an X-ray crystallographic analysis, as follows.

<u>CRYSTAL DATA</u>: $C_{15}H_{22}O$, MW 218.3, monoclinic, $P2_1/c$, a = 11.457(2), b = 10.402(2), c = 11.022(2) Å, $\beta = 91.06(2)^\circ$, Z = 4, U = 1313.4(4) Å³, $D_x = 1.10 \text{ g} \cdot \text{cm}^{-3}$, $D_0 = 1.10 \text{ g} \cdot \text{cm}^{-3}$.

A total of 1102 non-zero independent reflections with $2\theta < 50^\circ$ was measured on a Rigaku-automated four-circle diffractometer using $2\theta - \omega$ scan technique and graphite monochromated Mo K $_\infty$ radiation. The structure was solved by direct method usnig MULTAN program. Block-diagonal least-squares refinements with anisotropic nonhydrogen atoms and isotropic hydrogens reduced R to 0.045. The figure is a computer generated ORTEP drawing of the molecule (50% ellipsoids). Accordingly,

Fig. A computer generated ORTEP drawing of the molecule $\frac{4}{2}$

the stereostructure of the tricyclic sesquiterpene must be represented by 2, in which the carbinyl proton at C_1 -position is in an axial configuration, as judged from its 1 H NMR signal at $\S 3.48(1\text{H}, \text{dd}, \text{J} = 5, 11\text{Hz})$.

As shown in Scheme 1, $\frac{2}{2}$ may be directly produced from epoxygermacrene-D $(\frac{1}{2})$ and, biogenetically, we can not rule out a possibility, in which $\frac{2}{2}$ is a plausible intermediate of the oppositol-type

compound such as 5 produced on acid-catalyzed cyclization of 1, 11 although its acetate (3) is quite stable to such acids as 80% aq.AcOH, AcOH - H_2SO_4 , BF_3 etherate and AlCl $_3$ in Et_2O . We further examined some chemical properties of the acetate (3), as follows.

When ozonized in MeOH at -78 °C and then decomposed with Me $_2$ S, $_3$ was readily converted into the corresponding acetoxy ketone $_6)^{12}$ in 90% yield, which was further treated with 1% methanolic KOH (room temp., 5 h) and then with Ac $_2$ O - pyridine (room temp., overnight) to afford a stable epimer $_3$ Of $_4$ Overall yield. This epimer seems to be converted into axisonitrile-1.

Further studies on chemical conversion of $\frac{2}{\sim}$ into oppositol- and axisonitrile-type sesquiterpenes are in progress.

$$(3)$$

$$(4)$$

$$(6)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

References

- M. Niwa, M. Iguchi, and S. Yamamura, Bull. Chem. Soc. Jpn., <u>49</u>, 3137 (1976); <u>ibid.</u>, <u>49</u>, 3148 (1976) and many references cited therein.
- Private communication from Prof. S. Mihashi (Tokyo Colledge of Pharmacy): the structure of the newly isolated sesquiterpene from the plant <u>Torillis japonica</u> DC. was elucidated by direct comparison of its spectral data with those of our synthetic compound (2).
- 3. M. Niwa, M. Iguchi, and S. Yamamura, Tetrahedron Lett., 1979, 4291.
- 4. At this stage, we could not separate the tricyclic compound (2) in completely pure state.
- 5. 3 as a colorless oil: $C_{17}H_{26}O_2$ [m/e $262(M^+)$]; γ_{max} (film) 3080, 3040, 1740, 1660 and 890 cm⁻¹; γ_{max} (H NMR (CDCl₃): $S_{17}G_{26}G$
- 6. On acetylation with Ac_20 pyridine, this compound was readily converted into 3.
- 7. In the ¹H NMR signals assignable to the isopropyl group, the &-value of the methine proton seems to be quite similar to those of the remaining two methyls, although the methine signal is overlapped with other signals and not observed accurately.

- 8. Spectral data of 4: γ_{max} (film) 3090, 1715, 1665 and 890 cm⁻¹; ¹H NMR (CDC1₃): 0.58(1H, m), 0.98(3H, s), 0.97(3H, s), 1.12(3H, s) and 5.08(2H, m). On crystallization, this ketone was obtained in racemic form ($[\mathcal{L}]_D^{23} \pm 0^\circ$), because the optical purity of the starting sample of germacrene-D is 18.0% (M. Niwa, M. Iguchi, and S. Yamamura, Chem. Pharm. Bull., 28, 997 (1980)).
- 9. G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., <u>A27</u>, 368 (1971).
- 10. The atomic coordinates, the bond lengths and angles between inter- and intra-molecule, and some details will be published elsewhere.
- 11. M. Niwa, M. Iguchi, and S. Yamamura, Tetrahedron Lett., 1978, 4043.
- 12. $\stackrel{6}{\sim}$ as a colorless oil: $C_{16}^{H}_{24}^{O}_{3}$ [m/e 264(M⁺)]; γ_{max} (film) 1730br. cm⁻¹; $\stackrel{1}{}_{1}^{H}$ NMR (CDC1₃): $\stackrel{5}{\sim}$ 0.48 (1H, m), 0.92(6H, s), 0.97(3H, s), 2.01(3H, s) and 5.02(1H, dd, J= 5, 11Hz).
- 13. $\frac{7}{2}$ as a colorless oil: $C_{16}H_{24}O_3$ [m/e 264(M⁺)]; V_{max} (film) 1740 and 1710 cm⁻¹; V_{max} (CDC1₃): V_{max} (S0.54(1H, m), 0.94(6H, s), 1.19(3H, s), 2.10(3H, s) and 4.98(1H, dd, J= 4, 8Hz).
- 14. $\frac{8}{5}$ as a colorless oil: $C_{14}H_{22}O_2$ [m/e 222(M⁺)]; V_{max} (film) 3440 and 1705 cm⁻¹; ^{1}H NMR (CDCl₃): $\frac{8}{5}0.50(1H, m)$, 0.93(6H, br.s), 1.17(3H, s) and 3.78(1H, dd, J= 5, 8Hz).
- 15. H. Adinolfi, L. De Napoli, B. Di Blasio, A. Iengo, C. Pedone, and C. Santacroce, Tetrahedron Lett., 1977, 2815 and references cited therein.

(Received August 17, 1982)